四川宜宾:构建产业集群 强化人才激励******
【地方动态】
科技日报讯 (刘泽治陈科)近日,四川省宜宾市已制定在宜创新创业十条措施,设立人才发展专项资金和人才创新创业基金,重点招引扶持两院院士和国家级领军人才,对重点团队和高能级研发创新平台最高给予亿元以上的资助。
近年来,宜宾市紧扣“产业发展双轮驱动”战略推进需求,坚持以产聚才、以才促产、产才融合,创新完善人才激励政策,为构建千亿产业集群提供有力的人才支撑。同时,宜宾市聚焦构建千亿产业集群发展目标和重点企业创新需求,精准引进处于行业前沿的领军人才及其团队。目前,已先后吸引152名院士专家,精准引进5名院士共建高能级研发创新平台,建立起由政府出资助、企业出课题、高校出人才、人才出成果的政产学研协同创新机制,合力推进关键核心技术的创新突破。
良好的招人育人政策和协同创新的机制平台,助推宜宾市创建国家产教融合试点城市和全省唯一的“学教研产城”一体化试验区。据统计,自2019年以来,宜宾市38人入选省部级及以上特殊高层次人才计划,引进市外各类高能级人才221人。在宜办学高校从2016年的2所增加到12所,在校大学生由2万人增加到9万人,新引进院士(专家)工作站5个、产研院13家,建成智能终端四川省重点实验室等省级以上研发(孵化)平台126个。
提速近10倍!基于深度学习的全基因组选择新方法来了******
近日,中国农业科学院作物科学研究所、三亚南繁研究院大数据智能设计育种创新团队联合多家单位提出利用植物海量多组学数据进行全基因组预测的深度学习方法, 可以实现育种大数据的高效整合与利用,将助力深度学习在全基因组选择中的应用,为智能设计育种及平台构建提供有效工具。相关研究成果发表在《分子植物(Molecular Plant)》上。
全基因组选择作为新一代育种技术,通过构建预测模型,根据基因组估计育种值进行早期个体的预测和选择,从而缩短育种世代间隔,加快育种进程,节约成本,推动现代育种向精准化和高效化方向发展。
统计模型作为全基因组选择的核心,极大地影响了全基因组预测的准确度和效率。传统预测方法基于线性回归模型,难以捕捉基因型和表型间的复杂关系。
相较于传统模型,非线性模型(如深度网络神经)具备分析复杂非加性效应的能力,人工智能和深度学习算法为解决大数据分析和高性能并行运算等难题提供了新的契机,深度学习算法的优化将会提高全基因组选择的预测能力。
该研究团队以玉米、小麦和番茄3种作物的4种不同维度的群体数据为测试材料,通过创新深度学习算法框架开发了全基因组选择新方法。
与其他五种主流预测方法相比,该方法有以下优点: 可以利用多组学数据开展全基因组预测;算法设计中包含批归一化层、回调函数和校正线性激活函数等结构,可以有效降低模型错误率,提高运行速度;预测精度稳健,在小型数据集上的表现与目前主流预测模型相当,在大规模数据集上预测优势更加明显;计算时间与传统方法相近,比已有深度学习方法提速近10倍;超参数调整对用户更加友好。
该研究得到了国家重点研发计划、国家自然科学基金、海南崖州湾种子实验室和中国农业科学院科技创新工程等项目的支持。
学术支持
中国农业科学院作物科学研究所
记者
宋雅娟
(文图:赵筱尘 巫邓炎)